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Synopsis 

A scaling law was developed for the diffusion coefficient of spheroidal and ellipsoidal solutes in 
nonporous, equilibrium-swollen hydrogels. The law relates the solute diffusion coefficient to the 
solute size, the gel mesh size, and the gel equilibrium volume degree of swelling. The law was 
verified by appropriate data of low and high molecular weight solute diffusion through hydrogels 
such as swollen networks of poly(viny1 alcohol), poly(2-hydroxyethyl methacrylate), cellulose, and 
others. An additional scaling law was developed which relates the rate of release of a small or 
large molecule from an equilibrium swollen hydrogel with time and with morphological character- 
istics of the polymeric network. 

INTRODUCTION 

Since deGennes' proposal of relationships between macromolecular statis- 
tics and phase transition problems, scaling concepts have been used suc- 
cessfully in polymer science. Scaling concepts distinguish length scales of 
homogeneous chemical interaction and material. Chemical interactions are 
defined in terms of pair correlations between monomers. A correlation func- 
tion is a spatial distribution of monomers about any given monomer. Thus, 
scaling concepts avoid a great magnification of the medium to be described by 
neglecting local interactions and confining attention to a more panoramic 
view. The use of this global perspective leads to development of simple, 
universal relationships for polymeric media in a given set of conditions. 

In a scaling analysis, only the functional dependence of a set of parameters 
on a given quantity is desired. The resulting scaling law gives the correct 
relationship between parameters under a given set of conditions for all 
materials of interest. Only certain constants may be material dependent. This 
type of problem-solving approach is particularly useful in cases where exact 
expressions are prohibitively complex to derive or use. I t  will be shown that 
scaling concepts can be used to understand the relationships between struc- 
ture and diffusive transport through polymers. 

First, it is useful to consider the diffusion of a tagged molecule in a simple 
liquid. The molecule moves by a succession of random walks in which the 
mean free path is much smaller than its diameter.' We wish to develop a 
relationship between the size of this solute and its diffusion coefficient in a 
dilute solution. In this analysis it is convenient to use a hydrodynamic radius 
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Gg. 1. Overall dependence of the solute diffusion coefficient, 4, 12 (cm2/s), on the solute size, 
r (A), in deionized water at 20°C. 

R,, defined by a sphere of equivalent volume to that of the molecule, to 
characterize the molecular size of the solute. For nonspherical molecules which 
are not smaller than the solvent molecule, the diffusion coefficient D is a 
function of this radius. The well-known scaling law is 

where l is close to -5/6. Figures 1 and 2 include data of diffusion coefficients 
of a wide range of nonspherical solutes in deionized water at  2OoC and in an 
isotonic saline solution at  37OC, vs. their hydrodynamic 
radius to the - 5 / 6  power. These data are for solutes of molecular weight 
from 60 (urea) to 66,OOO (bovine serum albumin). This scaling law is particu- 
larly useful as it applies to any solute diffusing through a fluid, without 
consideration of the diffusional mechanism. 

Figure I 3 gives a depiction of the physical model considered for solute 
diffusion through a nonporous gel. This is a three-component system including 

r-  5'4 ( j+) 

qg.  2. Overall dependence of the solute diffusion coefficient, D3, 12 (cm*/s), on the solute size, 
r (A), in isotonic saline at 37OC. 
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Fig. 3. Crosslinked structure of a polymer gel, showing effective chains of the structure defined 
by crosslinks. The effective area for diffusion for the solute is characterized by an average mesh 
size c. The smaller solutes, illustrated as dark circles, must pass between the ma&omolecules. 

a polymer network, which is in swelling equilibrium with a solvent, and an 
inert solute which is small in size with respect to the length of the polymer 
chains. Many solutes, such as bioactive agents, can be modeled as relatively 
small spheres, spheroids, or ellipsoids which diffuse through the gel macro- 
molecular network. 

A gel has a crosslinked polymer structure where the crosslinks (junctions) 
define effective chains. We may identify the radius of gyration of a chain 
between crosslinks, R,, as a correlation length in the macromolecular net- 
work. The hydrodynamic screening caused by the network of polymer requires 
the solute’s path to be tortuous. An average correlation length or mesh size, 5, 
measured by neutron scatteringe or quasielastic light scatte~ing,~ characterizes 
the network and the effective space available for solute diffusion. Here 

5 = R, =; Q1/3N1I2I (2) 

where Q is the volume degree of swelling, N is the number of links in the 
chain, and I is the bond length (for -C-C- bonds). 

The “blob” models as proposed by d&ennes” can be used to quantify the 
degree of swelling of an effective polymer chain. Inside one blob or “sphere of 
influence” the chain does not interact with other chains. Here we identify the 
blob diameter with the mesh size or correlation length. Chains of sufficiently 
high molecular weight experience excluded-volume-induced swelling, and the 
mesh size in a semi-dilute solution obeys 

5 = qi - 2 X ) ~ 3 / 5  (3) 

where (1 - 2 x )  is the excluded volume per monomer and x is Flory’s reduced 
residual partial-molar free energy of di1ution.l’ 
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In the simple blob model of swollen coils, there is a critical degree of 
polymerization at which the expression for the mesh size changes from eq. (2) 
to eq. (3). The polymer gel in swelling equilibrium with a good solvent can be 
considered as a set of closely packed coils kept together by crosslinks and 
permanent entanglements. Thus, proceases in polymer solutions are very 
similar to those in swollen gels. The deGennes c*-theorem postulates that the 
chains in the semidilute gel automatically maintain an equilibrium concentra- 
tion c, proportional to the concentration at  which free coils just overlap in 
free solution, c*. At this transition concentration, the range of pair correla- 
tions is equal to the mean distance between chains. The scaling law is 

c, P k ( z ) ~ , - ~ / ~ ( 1  - 2 x ) z y  (4) 

where k(z) is a constant number of order unity depending on the crosslinking 
functionality z, Zp is the persistence length, and N, is the number of links in 
this length. In the limit of infinite chain links, the correlation length then 
obeys the concentration dependence6* 12-14 

4 +-3/4 ( 5 )  

At the transition concentration 6, the excluded volume is screened by the 
coils whose interactions are very weak and binary interactions dominate. A 
strict blob model no longer pertak since the coils approach the unperturbed 
state where eq. (2) applies. This state is called the “theta solvent” state, 
where the radius of gyration obeys the following concentration 
dependen~e’~~’~-’~ in the limit of infinite chain links: 

In general, the correlation length may be written as 

The exponent rn indicates the concentration dependence reflecting monomer- 
pair ~orre1ations.l~ 

Scaling concepts in diffusion have been previously confined to cooperative 
and tube diffusion. The cooperative or mutual motions of a collection of 
chains are osmotic responses to fluctuations in local solvent concentrations. 
The translational diffusion of a linear polymer trapped in a network is a 
reptation process.2o 

The description of small solute diffusion in polymer solutions and gels has 
been traditionally confined to the m a s  transfer theories of the Stefan-Maxwell 
equations and the principals of irreversible thermodynamics. These two ap- 
proaches are based on the application of continuum mechanics which pos- 
tulates macroscopic material properties which vary continuously with (i) the 
size of a differential volume of material considered, (ii) the position in the 
material system, and (iii) time.21v22 Each of these approaches explains 
the relation of diffusional flux to the applied driving forces. The 
Stefan-Maxwell approach uses multicomponent diffusivities for pairs of com- 
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ponents which are material and system properties of the components. The 
irreversible thermodynamic approach considers the diffusion coefficient as the 
linear or phenomenological coefficient for the flux resulting from a concentra- 
tion gradient force. Peppas and Meadowsz2 recently reviewed these theories as 
applied to mass transport in polymer membranes. 

Here we present new scaling laws of the solute diffusion coefficient with 
polymer structural characteristics which are applicable to gels. 

DERIVATION OF A NEW SCALING LAW 

It is desirable to relate the dependence of the solute diffusion coefficient 
through a gel on the structural parameters of the polymer. The diffusion 
process can be treated by Eyring's rate theory as described earlier since there 
exist barriers to the translational movement of the solute in the gel. According 
to the Eyring theory, the diffusion coefficient of a solute, D3, has the scaling 
law form of 

where T is the absolute temperature, AG', AH+, and A S +  are the free 
energy, enthalpy, and entropy of activation, respectively, and Y is the transla- 
tional oscillating frequency of the diffusing molecule. This equation may be 
applied to describe both the solute diffusivities in the gel, D3,12, and in the 
pure solvent, D3, 1. The activation enthalpy and oscillating frequency depend 
on the temperature and polymer properties. In ideal systems, the enthalpy of 
activation is independent of concentration. The solute diffusion coefficient in 
the gel normalized by the diffusion coefficient in pure solvent, fi, obeys eq. (9), 
under the assumption that the activation enthalpies and the oscillating 
frequencies in the two media remain constant, which is reasonable for dilute 
and chemically inert systems: 

The activation entropy can be expressed as a probability of activation, P+, as 
follows: 

S+= k l n  P+ (10) 

Upon substituting the respective probabilities from eq. (10) into eq. (9), the 
normalized diffusion coefficient can be expressed as a ratio of translational 
probabilities as in 

The probability Pi l2  contains two important contributions: (i) the probabil- 
ity of finding in the medium an opening or unhampered space equal to or 
larger than the size of the solute; and (ii) the conformational probability of 
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Fig. 4. Sieve 
areas must pass 

mecharuem * showing that solutes of different shapes but 
through the same average meah opening. 

identical cross-sectional 

the network forming a volume sufficiently large for the passage of the solute in 
one jump. Therefore, the translational probability in the gel, PCl2, can be 
broken into two components: (i) the probability of moving through the free 
volume, PCl2; and (ii) the probability of moving through the gel mesh, 
Since these actions are simultaneous, the overall probability is simply the 
product of the aforementioned probabilities. 

The novelty of this derivation is the calculation of the probability of a 
solute of characteristic size r to pass through an opening of size t, which 
describes the sieving mechanism of the diffusion process. There are two ways 
of describing this probability, either as the ratio of the sizes, 1 - r / t ,  or as the 
ratio of the areas, 1 - ( r / o 2 .  The parameter r characterizes the solute size by 
means of the radius of a sphere equivalent to the volume of the solute. Figure 
4 illustrates this problem by showing two solutes of equal cross-sectional area 
but different ellipsoidal shapes passing through the Same mesh opening. This 
figure illustrates that solute 1 stands a better probability of passing through 
the opening than solute 2. It is concluded that the probability is a function of 
the ratio of the sizes, and it is assumed that there is a linear dependence of the 
screening probability on the ratio of sizes. 

PJ,12 s 1 - r/( (12) 

Thus, the probability for the inert solute passing through a macromolecular 
screen decreases linearly as the solute approaches the size of the opening. 
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Free-volume theory can be used to determine the conformal probability of 
forming a hole sufficiently large for the passage of the solute in the swollen 
gel. Following the analysis of Yasuda et al.23 and Peppas and Reinhart,24 the 
free-volume theory provides the desired conformal probability. Equations (13) 
and (14) provide the probabilities of finding the required free-volume in the 
gel and solution, respectively, 

Pcl2 g e-7u*/v/,12 (13) 

Here y is a factor (1/2 I y I 1) which corrects for the overlap of free volumes 
associated with two or more proximal molecules, v* is the volume displaced by 
the solute in one diffusional jump, and y,l is the specific free volume of the 
i th  component. The displaced volume can be expressed as a function of the 
solute size since it is equal to the cross section, mr2, times the jump length, 
A,. The ratio of these probabilities is then 

The free-volume of the membrane can be written in terms of the free 
volumes of the solvent and the polymer as shown in 

Since the diffusion coefficient of the solute in a dry polymer network is several 
orders of magnitude smaller than that in a swollen gel, it is reasonable to 
neglect the polymer contribution to the free volume available for solute 
diffusion in the Then 

y,12 = +lKl (17) 

This; approximation is quite accurate since y,2 is typically 2.5% at 25OC. Upon 
combination of eqs. (15) and (17), we obtain 

(18) p- p+ - ,C-Y/(Q-1)1 
3 . d  3 , l  = 

where 

and 

Here Q is the volume degree of swelling for the gel and Y is a structural 
parameter, near unity, which is proportional to r2.% In effect, Y is a scale 
factor for the ratio of the volume displacement per diffusional jump to the 
free-volume contribution per molecule of solvent. The next section discusses 
evidence for the claim that a unit value of Y is a useful approximation. 
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The final form of the scaling expression for the normalized diffusion coeffi- 
cient results after combining eqs. ( l l ) ,  (12), and (18): 

In cases where the mesh size 5 is unknown, it is possible to extend the 
previous scaling analysis to semidilute, isotropic gels. In the semidilute state, 
the mesh size obeys the knownzo scaling law: 

(22) 5 z l c z  3 -3/4 

For the polymer, assuming a constant molar volume, we may write 
- 

+z = 1/Q = cZi) cZ 

Theref ore, 

5 I Q3/4 (24) 

Combination of eqs. (21) and (24) leads to the equivalent scaling law for the 
semidilute state: 

This completes the formal derivation of the new scaling law for solute 
diffusion in equilibrium swollen gels. It applies for: 

i. solutes sufficiently small with respect to the network mesh size to avoid 

ii. nonporous gels; 
iii. chemically inert solutes and gels. 

entangling with the polymer chains, i.e., r < 5; 

RESULTS AND DISCUSSION 

Verification of the scaling law may be done by use of existing diffusion data. 
In this analysis two parameters of importance are the volume degree of 
swelling, Q, and the mesh size 5 of membranes and gels. Korsmeyer and 
Peppasz5 and Peppas and Reinhartz4 presented experimental determinations 
of both 5 and Q. Since the authors did not use the relationship of eq. (24), 
Figure 5 is a plot of 5 vs. Q3l4 based on their data. The correlation coefficients 
are 0.996 and 0.9998 for the lines of the data of Korsmeyer and Peppasz5 and 
Peppas and Re id~ i r t , ' ~  respectively. These results clearly support the new 
scaling law. 

Equation (21) shows the effect of the structural parameters on the normal- 
ized diffusion coefficient under the conditions mentioned previously. Since no 
account has been made of material interactions, a plot of the right-hand side 
of eq. (21) vs. the left-hand side yields a straight line. According to the scaling 
mathematical framework employed, the unspecified slope and intercept de- 
pend on the polymer-solvent pair considered. 

The data presented in Figures 6 and 7 provide support for the final scaling 
law.3225-29 It is assumed that the material constant Y is unity for all cases. We 
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Fig. 5. Mesh sizes vs. equilibrium volume degree swelling Q, plotted as Q3/4, in semidilute gels 
of PHEMA (1) and PVA (2). Correlation coefficients are 0.998 and 0.996, respectively. Data from 
Refs. 25 and 26. 

will reconsider this assumption later. Figure 6 is a plot of the normalized 
diffusion coefficient versus the right-hand side terms of eq. (21). Each line 
represents data for &lute diffusion coefficients determined experimentally for 
hydrophilic membranes swollen to equilibrium in water. The membranes vary 
due to the degree of crosslinking, and, consequently, also due to the mesh size 
and equilibrium volume degree of swelling. Figure 7 is a similar plot of the 
left-hand side terms of eq. (25) vs. the right-hand side terms. The data are for 
different sizes of solutes through two different gels. Good correlation coeffi- 
cients result from a linear regression analysis in all cases. 

Table I summarizes the nonlinear regression analysis on these data. Here a 
nonlinear regression algorithm was used to determine the rms residuals based 

0 0.2 0.4 0.6 0.8 1.0 

Fig. 6. Dependence of the normalized diffusion coefficient D3,12/D3,1 on the term (1 - 
r/[)exp[ - l(Q - l)]. Data presented are for (1) salicylic acid (correlation coefficient p = 0.975) 
through P H E W , "  (2) progesterone ( p = 0.982) through p(HEMA-co-MEMA) hydrogels with 
EGMA,'* (3) progesterone ( p  = 0.953) through p(HEMA-co-MEMA) hydrogels with TEGDMA,28 
(4) theophylline ( p  = 0.991) through PVA,25 and (5) bovine serum albumin ( p  = 0.953) through 
PVA.26 
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Fig. 7. Dependence of the normalized diffusion coefficient D3,,2/D3,1 on the term @-3/4 

expC- 1/(Q - l)]. Data presented are for various solutes through (1) heparinized PVA3 (correla- 
tion coefficient p = -0.990) and (2) Avisco wet gel3 ( p  = 0.971). 

on best fitted values of Y and values of unity by contention. Except for the 
case of bovine serum albumin diffusi~n,~' the nonlinear regression results in a 
best-fitted value for Y close to unity. The smaller value of Y seems physically 
realistic since albumin is much larger than the other solutes. Here the smaller 
diffusional jump length for the larger solute could be due to inertial effects. 
Unfortunately, none of the cited investigations include confidence intervals in 
their results by experimental replication. For practical considerations, there is 
little, if any, difference in the root-mean-square of the residuals between the 
best-fit determination of Y and the case where Y is assumed to be unity. 
Typically, diffusion coefficients are determinable within 15%; the probable 
scattering of data cannot justify distinction between the two regression 
analyses. This small amount of available data lends support to the notion that 
Y is near unity, and the scaling analysis has good correlative value. It is also 
apparent that Y = 1 is a useful approximation as the model is relatively 
insensitive to this parameter. It is clear, however, that additional studies 
including statistical replications would be quite valuable. 

TABLE I 
Nonlinear Regreon Fitting of Model Parameter Y of Eq. (21) 

and Linear Regresson of Literature Data for Y = 1 

Data group 

Beat-fit RMS 
value of RMS residual 

Y residual (Y = 1) 

Bovine serum albumin 0.13 0.11 0.06 
Theophylline 0.69 0.05 0.04 
Progesterone 1.05 0.03 0.02 
Progesterone 0.55 0.04 0.05 
Avisco wet gel 0.80 0.09 0.08 
Heparinized PVA 0.75 0.02 0.02 
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As an example of the utility of eq. (21), the reader should consider the first 
60% of Fickian solute release from an equilibrium swollen gel in the shape of a 
long slab into a perfect sink. The fraction of solute released, MJM,, obeysm 

M t / M ,  = [4D3,,,t/?rL2] 1'2 (26) 

where L is the slab half-thickness. 

differentiated and substituted into eqs. (1) and (21) to obtain 
To find the structural effects on the rate of solute release, eq. (26) may be 

where 

The structural parameters of the gel strongly affect the solute diffusivity and 
thus the rate of release. In addition, the solute release rate is a very com- 
plicated function of its size. 

Both structural parameters ( and Q of the gel are concentration-dependent 
by definition, the equilibrium volume degree of swelling is the reciprocal of the 
equilibrium polymer volume fraction. The concepts surnmarized by eq. (21) 
zqd the unified theory for the mesh size correlation length concentration 
dependence can be combined. Figure 8 illustrates the theoretical results over 
the semidilute to concentrated regimes and the effect of increasing the relative 
solute size. The typical solute size r is arbitrarily taken as 1/10 of the mesh 
size 6 evaluated14 at a polymer concentration +*. This figure shows that an 
increase in the polymer concentration reduces the solute diffusivity. In ad- 
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Fig. 8. The effect of the equilibrium polymer volume fraction & on the normalized solute 
diffusivity in hydrogels when r = 0.14 (l), 0.24 (2), 0.34 (3), and 0.44 (4). Experimental data are 
available between +z = 5 x lo-' and & = 7 x lo-'. 
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dition, the result of increasing the size of the solute is a decrease of the solute 
d i h i v i t y  at lower polymer concentrations. It is apparent that the dramatic 
decrease in the d ih iv i ty  occurs as the result of (i) size screening as il- 
lustrated by the effect of increase of the solute size and (ii) free-volume 
availability as illustrated by the effect of an increase of the polymer volume 
fraction. 

The ability of scaling laws to illustrate trends from relatively simple logical 
arguments imparts their predictive value. The experimentalist would use 
them as a semitheoretical correlation for data. The omitted constants for eq. 
(21) are a function of the polymer-solvent pair. Once they are determined for 
a gel and a solute by experimentally obtaining at  least two data points, one 
can predict the effect of (i) increasing the solute size by a known factor and 
(ii) increasing the polymer crosslinking by a known amount on the solute 
diffusivity and rate of release. Equation (21) has been verified by the ap- 
propriate data available up to 1987 for solutes smaller than the mesh size, and 
for equilibrium polymer volume fractions between 0.05 and 0.74. 

CONCLUSIONS 

Scaling concepts have been shown to be quite useful in the investigation of 
solute diffusion through hydrogels. The derived scaling laws explain the 
effects of gel morphology and solute size on the kinetics and mechanism of 
solute release from hydrogels. The scaling law for the solute diffusivity 
through a hydrogel has been verified by the data available to date. The model 
can be used to predict the effects of changing the solute size, degree of 
crosslinking, and the equilibrium volume degree of swelling for 
polymer-solvent pairs. This scaling law has two undetermined constants for 
any gel. Unfortunately, many investigators neglect to characterize gels by the 
average mesh size and equilibrium volume degree of swelling. These quantities 
are easily determinable and have been shown to offer significant contributions 
to the solute release kinetics. 

This work was supported by Grant No. CPE-82-07381 from the National Science Foundation. 
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